Development of a nanoliposomal formulation of erlotinib for lung cancer and in vitro/in vivo antitumoral evaluation

نویسندگان

  • Xiao Zhou
  • Hui Tao
  • Kai-Hu Shi
چکیده

The aim of this study was to develop PEGylation liposomes formulations of erlotinib and evaluate their characteristics, stability, and release characteristics. The average particle sizes and entrapment efficiency of PEGylation erlotinib liposomes are 102.4±3.1 nm and 85.3%±1.8%, respectively. Transmission electron microscopy images showed that the liposomes dispersed well with a uniform shape and no changes during the storage. The in vitro drug-release kinetic model of erlotinib release from the PEGylation liposomes in phosphate-buffered saline fit well with the Higuchi equation. In vitro anticancer activity assay showed that the blank liposomes had lower cellular cytotoxicity and that the cellular cytotoxicity of erlotinib liposomes increased significantly under the same incubation condition, which should contribute to the increase in intracellular drug concentration by the transportation of liposomes. The two liposomes of erlotinib (with and without PEGylation) exhibited similar cellular cytotoxicity with no significantly different concentrations. Pharmacokinetic results indicated that erlotinib-loaded PEGylation liposomes can significantly change the pharmacokinetic behavior of drugs and improve the drug bioavailability by nearly 2 times compared to ordinary liposomes. No sign of damages such as the appearance of epithelial necrosis or sloughing of epithelial cells was detected in histological studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative of in vitro evaluation between erlotinib loaded Nanostructured lipid carriers and liposomes against A549 lung cancer cell line

Erlotinib (ELT) as a small molecule with poor solubility, poor bioavailability, and instability in gastrointestinal environment, has been considered as a therapeutic agent for Non-Small-Cell Lung Cancer (NSCLC) therapy through oral administration. In the present study, ELT-liposome and ELT-NLCs were successfully prepared and characterized by assessment of the particle size, zeta potential (ZP),...

متن کامل

Comparative of in vitro evaluation between erlotinib loaded Nanostructured lipid carriers and liposomes against A549 lung cancer cell line

Erlotinib (ELT) as a small molecule with poor solubility, poor bioavailability, and instability in gastrointestinal environment, has been considered as a therapeutic agent for Non-Small-Cell Lung Cancer (NSCLC) therapy through oral administration. In the present study, ELT-liposome and ELT-NLCs were successfully prepared and characterized by assessment of the particle size, zeta potential (ZP),...

متن کامل

In-vitro and In-vivo Evaluation of Silymarin Nanoliposomes against Isolated Methicillin-resistant Staphylococcus aureus

Staphylococcus aureus is an opportunistic pathogen and remains a common cause of burn wound infections. Different studies have shown that entrapment of plant-derived compounds into liposomes could increase their anti-Staphylococcus aureus activity. Silymarin is the bioactive extract from the known plant Silybum marianum L. The objective of this study was to evaluate efficacy of silymarin in fre...

متن کامل

In-vitro and In-vivo Evaluation of Silymarin Nanoliposomes against Isolated Methicillin-resistant Staphylococcus aureus

Staphylococcus aureus is an opportunistic pathogen and remains a common cause of burn wound infections. Different studies have shown that entrapment of plant-derived compounds into liposomes could increase their anti-Staphylococcus aureus activity. Silymarin is the bioactive extract from the known plant Silybum marianum L. The objective of this study was to evaluate efficacy of silymarin in fre...

متن کامل

Preparation and Evaluation of a Liposome Drug Delivery System in Cancer Treatment in vitro

Cancer is a fatal disease and relatively widespread in the world; Breast cancer is the most prevalent cancer among women. Hydroxyurea (HU) is a chemotherapy drug for the cure of cancer different types in patients, for example breast cancer, but has several defects, for to remove these problems in this study a nanoliposome (NL) suspension for Hydroxyurea (HU) delivery in breast cancer cell thera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2018